SREE VIDYANIKETHAN ENGINEERING COLLEGE
(Autonomous)

COURSE STRUCTURE (2010-2011)
I Year B.Tech. (Yearly Pattern)

CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Periods/Week</th>
<th>C</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Internal</td>
</tr>
<tr>
<td>10BT1HS01</td>
<td>Technical English</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT1BS01</td>
<td>Engineering Physics</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT1BS02</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT1BS03</td>
<td>Engineering Mathematics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT10101</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT1EC01</td>
<td>Problem Solving and Computer Programming</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>10BT1EC02</td>
<td>Engineering Drawing</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>10BT1EC03</td>
<td>Computer Programming Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>10BT1BS06</td>
<td>Engineering Physics & Engineering Chemistry Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>10BT1HS02</td>
<td>English Language & Communication Skills Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>10BT1EC04</td>
<td>Engineering & IT Workshop</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>305</td>
</tr>
</tbody>
</table>

36
UNIT –I
1. Lesson entitled *Heaven’s Gate* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Mokshagundam Visvesvaraya* from *Inspiring Lives*, Published by Maruthi Publications, Guntur

UNIT –II
1. Lesson entitled *Sir CV Raman: a Path breaker in the Saga of Indian Science* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Mother Teresa* from *Inspiring Lives*, Published by Maruthi Publications, Guntur

UNIT –III
1. Lesson entitled *The Connoisseur* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Dr. Amartya Kumar Sen* from *Inspiring Lives*, Published by Maruthi Publications, Guntur

UNIT –IV
1. Lesson entitled *The Cuddalore Experience* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Kalpana Chawla* from *Internet*

UNIT –V
1. Lesson entitled *Bubbling Well Road* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Nandan Nilekani* from *Internet.*

UNIT –VI
1. Lesson entitled *The Odds against Us* from *Enjoying Everyday English*, Published by Sangam Books, Hyderabad
2. Lesson entitled *Charles Chaplin* from *Inspiring Lives*, Published by Maruthi Publications, Guntur
* Exercises from the lessons not prescribed shall also be used for classroom tasks.

UNIT – VII

Exercises on Reading and Writing Skills:
- Reading Comprehension
- Letter writing
- Essay writing

UNIT – VIII

Practice Exercises on Remedial Grammar:
- Common errors in English
- Subject-Verb agreement
- Articles
- Prepositions
- Tenses
- Active/Passive Voice
- Reported Speech

TEXTBOOKS:

REFERENCE BOOKS:

1. *Innovate with English: A Course in English for Engineering Students*, edited by T Samson, Foundation Books
3. *Effective English*, edited by E Suresh Kumar, A RamaKrishna Rao, and P Sreehari, Published by Pearson
9. *Murphy’s English Grammar* with CD, Murphy, Cambridge University Press, 2004
B.Tech. I Year
10BT1BS01: ENGINEERING PHYSICS
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

UNIT-I
Crystal Structures and X-Ray Diffraction: Introduction, space lattice, basis, unit cell, lattice parameter, Bravais lattices, crystal systems, structure of simple cubic, body centered cubic, face centered cubic crystals, Miller indices of planes and directions in crystals, separation between successive (hkl) planes.

Crystal Defects: Point defects, line defects, Burger’s vector, X-ray diffraction by crystal planes, Bragg’s law, Laue and powder methods.

UNIT-II
Principles of Quantum Mechanics: Waves and particles, de-Broglie’s hypothesis, G.P.Thomson experiment, Heisenberg’s uncertainty principle, significance of wave function, Schrödinger’s one dimensional wave equation (time independent), particle in a one dimensional potential box, Fermi-Dirac distribution and effect of temperature (qualitative treatment only), scattering-source of electrical resistance.

Band Theory of Solids: Electron in a periodic potential, Kronig-Penney model (qualitative treatment only), origin of energy band formation in solids, distinction between metals, semiconductors and insulators based on band theory.

UNIT-III
Semiconductors: Introduction, intrinsic and extrinsic semiconductors, carrier concentration, electrical conductivity in semiconductors, drift and diffusion, Einstein’s relation, Hall effect, direct and indirect band gap semiconductors, p-n junction, energy diagram of p-n diode, diode equation, LED, LCD and photo diode.

UNIT-IV
Magnetic Properties: Introduction, origin of magnetic moment, classification of magnetic materials into dia, para, ferro, anti-ferro and ferri magnetism, hysteresis, soft and hard magnetic materials, magnetic bubbles memory.

Dielectric Properties: Introduction, dielectric constant, electronic, ionic and orientation polarizations (qualitative treatment only), local field, Clausius-Mossotti equation, frequency dependence of polarisability (qualitative treatment only), ferro and piezo electricity.
UNIT-V

Acoustics of Buildings and Acoustic Quieting: Basic requirement of acoustically good hall, reverberation and time of reverberation, Sabine’s formula for reverberation time (qualitative treatment), measurement of absorption coefficient of a material, factors affecting the architectural acoustics and their remedies.

Acoustic Quieting: Aspects of acoustic quieting, methods of quieting, quieting for specific observers, mufflers and sound proofing.

UNIT-VI

Superconductivity: General properties, Meissner effect, penetration depth, Type-I and Type-II superconductors, flux quantization, Josephson effects, BCS theory, applications of superconductors.

Lasers: Introduction, characteristics of laser, spontaneous and stimulated emission of radiation, Einstein’s coefficients, population inversion, ruby laser, Helium-Neon laser, semiconductor laser, applications of lasers in industry, scientific and medical fields.

UNIT-VII

Fiber Optics: Introduction, principle of optical fiber, acceptance angle and acceptance cone, numerical aperture, types of optical fibers and refractive index profiles, optical fiber communication systems, application of optical fibers.

Holography: Introduction, construction of a hologram, reconstruction of image from hologram and applications.

UNIT-VIII

Nanomaterials: Introduction, basic principles of nanomaterials, preparation of nanomaterials, ball milling, plasma arching, chemical vapour deposition method, sol-gel method, fabrication of nanomaterials, properties of nanomaterials, carbon nanotubes, properties and applications of carbon nanotubes, applications of nanomaterials.

TEXTBOOKS:

REFERENCE BOOKS:

UNIT-I

Chemistry of Engineering Materials:

Lubricants: Definition, functions of lubricants, mechanism of lubrication, classification of lubricants, properties of lubricants—viscosity, flash and fire points, cloud and pour points, Aniline point, neutralization number and mechanical strength.

Liquid Crystals: Definition, structure, classification and engineering applications of liquid crystals.

Insulators: Definition, classification, characteristics of insulating material and their engineering applications.

UNIT-II

Polymer Science and Technology: Introduction, classification of polymers, functionality, polymerization and types of polymerization, plastics—thermoplastics, thermosettings, composition, preparation and engineering applications of PVC, Teflon and Bakelite.

Rubber: Vulcanization of rubber.

Elastomers: BUNA-N, BUNA-S and polyurethane.

Conducting Polymers: Definition, classification and engineering applications.

UNIT-III

Electrochemistry: Introduction, conductivity, equivalent conductivity and molar conductivity. Redox reactions, electrode potential and measurement of electrode potential (Nernst equation). Electrochemical series, electrochemical cell and measurement of EMF of electrochemical cell. Concentration cell, **Reference Electrodes:** hydrogen and calomel electrodes. **Batteries:** Introduction, Ni-Cd batteries, Lithium batteries. **Fuel cells:** Introduction, Hydrogen-Oxygen fuel cell, Methanol-Oxygen fuel cell.
UNIT-IV

Corrosion and its Control: Introduction, definition, types of corrosion; dry corrosion, wet corrosion, concentration cell corrosion, galvanic series, galvanic corrosion, pitting corrosion, factors influencing the corrosion. Control of corrosion; cathodic protection, sacrificial anodic protection, impressed current cathodic protection, uses of inhibitors, electroplating and electroless plating.

UNIT-V

Surface Chemistry: Adsorption, types of adsorption, adsorption of gases on solids, adsorption from solutions, applications of adsorption, Langmuir theory of adsorption. Colloids, types of colloidal systems, applications of colloids. Emulsions and micelles.

UNIT-VI

Chemistry of Nanomaterials: Introduction to nanochemistry, classification of nanomaterials, size and scale, units, scaling laws, properties of nanomaterials, methods of synthesis - top down and bottom up methods, sol-gel process, plasma enhanced vapor decomposition process, applications of nanomaterials.

UNIT-VII

Analytical Techniques: Introduction to spectroscopy.

U.V.Visible Spectroscopy: Basic principle, origin of absorption bands, chromophores and their absorption values.

I.R. Spectroscopy: Principle, modes of vibration, group frequencies.

NMR Spectroscopy: Principle, shielding and deshielding of protons, chemical shift and applications of NMR spectroscopy.

Atomic Absorption Spectroscopy: Principle and applications.

Flame photometry: Principle and applications.

UNIT-VIII

Water Technology: Introduction, sources of water, types of impurities in water, hardness of water- temporary and permanent hardness, units of hardness, disadvantages of hard water. Estimation of hardness by EDTA method, boiler troubles.

Softening methods: Internal treatment, external treatment; zeolite process, ion exchange process, desalination of brackish water - reverse osmosis.
TEXTBOOKS:

REFERENCE BOOKS:
B.Tech. I Year

10BT1BS03: ENGINEERING MATHEMATICS
(Common to CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

UNIT-I

First Order Differential Equations: Ordinary differential equations of first order and first degree: Linear and Bernoulli type equations, exact equations and reducible to exact. Applications of first order equations to orthogonal trajectories (both cartesian and polar forms), law of natural growth and decay, Newton’s law of cooling.

UNIT-II

Higher Order Differential Equations: Non-homogeneous linear differential equations of second and higher order with constant coefficients. Methods of finding the particular integrals for $Q(x) = e^{ax}, \sin ax, \cos ax, x^n, e^{ax}V(x), x V(x), x^n V(x)$. Method of variation of parameters. Applications to L-R-C circuits, deflection of beams.

Unit-III

Partial Differentiation: Functions of two or more variables, homogeneous functions, total derivatives, derivatives of implicit function, jacobian, errors and approximations, maxima and minima of functions of two variables with and without constraints, Lagranges method of undetermined multipliers.

UNIT-IV

Applications of Derivatives: Radius, centre and circle of curvature, evolutes and envelopes. Tracing of curves in cartesian, parametric and polar forms.

UNIT-V

Laplace Transformations: Laplace transforms of standard functions. Properties of LTs, first and second shifting theorems, LTs of derivatives and integrals, LTs of periodic functions. Unit step function, dirac delta function. Inverse transforms and convolution theorem.
UNIT-VI

Applications of Laplace Transformations: Applications of LTs to ordinary differential equations of first and second order, Heavisides partial fraction expansion theorem.

UNIT-VII

Applications of Integration: Applications of integration to lengths of curves, areas of surfaces and volumes of solids and to surfaces and solids of revolutions. Double and Triple integrals – change of variables, change of order of integration and volume as double integral.

UNIT-VIII

Vector Calculus: Vector differentiation, tangent and normal to curves, gradient, divergence, curl and vector identities. Laplacian operator, vector integration. Line integrals independent of path, work done, conservative field and scalar potential functions. Surface integrals, flux and volume integrals, verifications and applications of vector integral theorems: Greens theorem, Stokes theorem and Gauss divergence theorem (without proof).

TEXTBOOK:

REFERENCE BOOKS:

UNIT–I

Statics of Particles: Basic concepts, system of units, system of concurrent coplanar forces in plane, resultant of forces, laws of mechanics, equilibrium of forces, Lami’s theorem, vectorial representation of forces.

UNIT–II

Statics of Rigid Bodies: Moment of a force, Varignon’s theorem, moment of a couple, vectorial representation of moments and couples, coplanar non-concurrent forces, equilibrium of rigid bodies, types of supports and loads, principle of virtual work, work done by forces and moments.

UNIT–III

Perfect Frames: Types of frames, free body diagram, degree of indeterminacy, analysis by method of joints and method of sections, tension coefficient method.

UNIT–IV

Friction: Types of friction, frictional force, laws of friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, application, body on horizontal/inclined plane, two bodies in contact, Ladder friction, Screw friction, Belt friction, Wedge friction.

UNIT–V

Centroid and Centre of Gravity: Determination of centroid: method of moments, method of integration, graphical method, theorem of Pappu’s, centroid of a line, centroid of a volume, centre of gravity of rigid bodies.

UNIT–VI

Moment of Inertia: Parallel and perpendicular axis theorems, moment of inertia of composite sections, product of inertia, transfer of axes, principal axes of Inertia, mass moment of Inertia.
UNIT–VII

Kinematics of Particles: Basics of dynamics, rectilinear motion, motion with constant acceleration, freely falling bodies, curvilinear motion, motion of a projectile, uniform circular motion, relative motion.

UNIT–VIII

Kinetics of Particles: Kinetics of rectilinear motion, Newton’s law of motion, D’Alembert’s principle, motion of a lift, motion on an inclined plane, kinetics of circular motion, centrifugal force, super elevation of curves, rotation.

TEXT BOOKS

REFERENCES

B.Tech. I Year

10BT1EC01: **PROBLEM SOLVING AND COMPUTER PROGRAMMING**
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

UNIT-I

Introduction to Computers: Computer systems, computer hardware, computer software, computing environments, computer languages, writing, editing, compiling and linking programs, program execution, algorithm and flowchart.

Introduction to Problem Solving: The problem solving aspect, top-down design, implementation of algorithms, program verification and efficiency of algorithms.

UNIT-II

Introduction to the C Language: C programs, identifiers, types, variables, types of operators, constants, coding constants, type casting and conversion, formatted input and output. Structure of a C program - expressions, precedence and associativity, evaluation of expressions, mixed type expressions.

UNIT-III

Selection - Making Decisions: Two way selection: if, if-else and nested if-else.

Multi-way selection: else-if ladder and switch statements.

Repetition: concept of loop, pre-test and post-test loops, initialization and updating, event and counter controlled loops, loops in C, break, continue and goto statements.

UNIT-IV

Fundamental Algorithms: Exchanging the values of two variables, counting, summation of a set of numbers, factorial computation, generation of the Fibonacci sequence, reversing the digits of an integer, number base conversion, character to number conversion, the smallest divisor of an integer, greatest common divisor of two integers and generating prime numbers.

UNIT-V

Arrays: Arrays in C, one, two and multidimensional arrays, linear search, binary search, bubble sort, selection sort and insertion sort.

Strings: Concepts, strings in C, string input/output functions, array of strings and string manipulation functions.
UNIT-VI

Functions: Designing structured programs, functions in C, user-defined functions, types of functions, call by value and call by reference, recursion, factorial using recursion, standard library functions, scope, storage classes and preprocessor directives.

Derived Types: Type definition (typedef), enumerated types, structure, accessing structures, Complex Structures: Nested structures, structures containing arrays, array of structures.

Structures and Functions: Sending individual members, sending the whole structure, unions and bit fields.

UNIT-VII

Pointers: Concepts, pointer variables, accessing variables through pointers, pointer declaration and definition, initialization, pointer arithmetic, array of pointers, pointers to arrays, pointers and functions, pointers to pointers, pointers to structures and memory allocation functions.

UNIT-VIII

Files: Introduction and classification of files, opening and closing of files, read and write operations, conversion of files and command line arguments.

Basic Data Structures: Overview of data structures, implementation of stack operations (push, pop), implementation of linear queue operations (insertion, deletion), circular queues, singly linked list, doubly linked list and circular linked list.

TEXTBOOKS:
2. How to Solve it by Computer, R.G. Dromey, Pearson Education, 1st Edition

REFERENCE BOOKS:
2. C and Data Structures, P. S. Deshpande and O. G. Kakde, WILEY-dreamtech India Pvt. Ltd. 2005
UNIT-I

Scales and Curves:

Scales: Full size, reduced and enlarged scales, representative fraction, plain, diagonal scales, scale of chords.

Curves: Curves used in engineering practice, conic sections-ellipse, parabola and hyperbola, construction-general method only.

UNIT-II

Projections of Points and Lines: Introduction, representation of three dimensional objects, general principles of orthographic projection, importance of multiple views and their placement, first angle and third angle projections, projections of points, two view and three view projections. Projection of lines inclined to one plane, inclined to both the planes, finding true lengths, true inclinations and traces of lines.

UNIT-III

Projections of Planes and Solids: Projections of regular plane surfaces, planes parallel to one plane, planes inclined to one plane and inclined to both the planes, projections on auxiliary planes. Projections of regular solids (prism, cylinder, pyramid and cone), solids inclined to one plane and both planes, auxiliary views.

UNIT-IV

Sections of Solids and Development of Surfaces:

Sections of Solids: Section planes and sectional views of right regular solids - prisms, cylinder, pyramids and cone. True shapes of the sections.

Development of Surfaces: Right regular solids – prisms, cylinder, pyramids, cone and their sectional parts.
UNIT-V

UNIT-VI

Perspective Projections: Perspective view of plane figures and simple solids, vanishing point method and visual ray methods.

UNIT-VII

Introduction to Computer Aided Drafting: Introduction to AutoCAD, beginning a new drawing, exploring and interacting with the drawing window, saving and opening a file, coordinate systems (cartesian, polar and relative co-ordinate system), introduction to draw commands and modify commands, dimension commands, display commands and miscellaneous commands.

UNIT-VIII

Drafting Of 2D and 3D Figures: Generation of curves, points, lines, polygons, simple solids with dimensioning. Drawing of simple building plans.

TEXTBOOKS:

REFERENCE BOOKS:
B.Tech. I Year

10BT1EC03: **COMPUTER PROGRAMMING LAB**
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

WEEK-1

a. Let a and b are two integer variables whose values are 10 and 13 respectively. Write a program to evaluate the following arithmetic expressions.

 i) a + b
 ii) a − b
 iii) a * b
 iv) a / b
 v) a % b

b. Write a program that evaluates the following algebraic expressions after reading necessary values from keyword.

 i) (ax + b)/(ax – b)
 ii) 2.5 log x + Cos 32° + | x² + y² | + √2xy
 iii) x⁵ + 10 x⁴ + 8 x³ + 4 x + 2
 iv) ae^kt

WEEK-2

a. Mr. Gupta deposited Rs.1000 in a bank. The bank gives simple interest at the rate of 15% per annum. Write a program to determine the amount in Mr. Gupta’s account at the end of 5 years. (Use the formula I = P T R / 100)

b. A cashier has currency notes of denominations Rs.10, Rs. 50 and Rs. 100. If the amount to be withdrawn is input in hundreds, find the total number of notes of each denomination the cashier will have to give to the withdrawer.

c. In a town, the percentage of men is 52. The percentage of total literacy is 48. If total percentage of literate men is 35 of the total population, write a program to find the total number of illiterate men and women if the population of the town is 8000.

WEEK-3

a. Write a program that prints the given 3 integers in ascending order using if - else.
b. Write a program to calculate commission for the input value of sales amount.

Commission is calculated as per the following rules:

i) Commission is **NIL** for sales amount Rs. 5000.

ii) Commission is 2% for sales when sales amount is > Rs. 5000 and <= Rs. 10000.

iii) Commission is 5% for sales amount > Rs. 10000.

c. A character is entered through keyboard. Write a program to determine whether the character entered is a capital letter, a small case letter, a digit or a special symbol. The following table shows the range of ASCII values for various characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>ASCII values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Z</td>
<td>65 - 90</td>
</tr>
<tr>
<td>a - z</td>
<td>97 - 122</td>
</tr>
<tr>
<td>0 - 9</td>
<td>48 - 57</td>
</tr>
<tr>
<td>Special Symbols</td>
<td>0 - 47, 58 - 64, 91 - 96, 123 - 127</td>
</tr>
</tbody>
</table>

WEEK-4

a. If cost price and selling price of an item is input through the keyboard, write a program to determine whether the seller has made profit or incurred loss. Also determine how much profit or loss he incurred in percentage.

b. An insurance company calculates premium as follows:

i) If a person’s health is excellent and the person is between 25 and 35 years of age and lives in a city and is a male then premium is Rs.4 per thousand and the policy amount cannot exceed Rs.2 lacks.

ii) If a person satisfies all the above conditions and is female then the premium is Rs.3 per thousand and the policy amount cannot exceed Rs.1 lack.

iii) If a person’s health is poor and the person is between 25 and 35 years of age and lives in a village and is a male then premium is Rs.6 per thousand and the policy cannot exceed Rs. 10000.

iv) In all other cases the person is not insured.

Write a program to determine whether the person should be insured or not, his/her premium rate and maximum amount for which he/she can be insured.
WEEK-5
a. Write a program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, %, use switch statement)

b. Write a program to find the grace marks for a student using switch. The user should enter the class obtained by the student and the number of subjects he has failed in. Use the following rules:
 i) If the student gets first class and the number of subjects failed in is >3, then no grace marks are awarded. If the number of subjects failed in is < or = 3 then the grace is 5 marks per subject.
 ii) If the student gets second class and the number of subjects failed in is >2, then no grace marks are awarded. If the number of subjects failed in is < or = 2 then the grace is 4 marks per subject.
 iii) If the student gets third class and the number of subjects failed in is >1, then no grace marks are awarded. If the number of subjects failed in is = 1 then the grace is 5 marks per subject.

WEEK-6
a. Write a program to find the sum of individual digits of a positive integer.

b. A Fibonacci sequence is defined as follows: The first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence.
 Write a program to generate the first N terms of the sequence.

c. Write a program to generate all the prime numbers between 1 and N, where N is a value supplied by the user.

WEEK-7
a. Write a program to calculate the following sum:
 \[\text{sum}=1-x^2/2! +x^4/4!-x^6/6!+x^8/8!-x^{10}/10! \]

b. i) A perfect number is a number that is the sum of all its divisors except itself. Six is the perfect number. The only numbers that divide 6 evenly are 1, 2, 3 and 6 (i.e., 1+2+3=6).
ii) An abundant number is one that is less than the sum of its divisors (Ex: 12 < 1+2+3+4+6).

iii) A deficient number is one that is greater than the sum of its divisors (Ex: 9 > 1+3).

Write a program to classify N integers (Read N from keyboard) each as perfect, abundant or deficient.

WEEK-8

a. Write a program to find the largest and smallest number in a list of integers.
b. Write a program to perform the following:
 i) Addition of two matrices.
 ii) Multiplication of two matrices.

WEEK-9

Write a program to perform the following:
 i) Linear search
 ii) Binary search

WEEK-10

Write a program to perform the following:
 i) Bubble sort
 ii) Selection sort
 iii) Insertion sort

WEEK-11

a. Write a program that uses functions to perform the following operations:
 i) To insert a sub-string in main string at a specified position.
 ii) To delete N characters from a given string from a specified position.
b. Write a program to determine whether the given string is palindrome or not.

WEEK-12

a. Write a program to display the position or index in the main string S where the sub string T begins. Display -1 if S does not contain T.
b. Write a program to count the number of lines, words and characters in a given text.
WEEK-13

a. 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of 1. Ex: 2’s complement of 11100 is 00100. Write a program to find the 2’s complement of a given binary number using functions.

b. Write a program to convert a roman number in to its decimal equivalent using functions.

WEEK-14

Write programs to perform the following using recursion

i) To find the factorial of a given integer.

ii) To find the GCD (Greatest Common Divisor) of two given integers.

iii) To solve Towers of Hanoi problem.

WEEK-15

Write a program that uses functions to perform the following operations:

i) Reading a complex number

ii) Writing a complex number

iii) Addition of two complex numbers

iv) Multiplication of two complex numbers

(Note: Represent complex number using a structure.)

WEEK-16

a. Write a program to accept the elements of the structure as:
 - Employee-name
 - Basic pay

 Display the same structure along with the DA, CCA and Gross salary for 5 employees.
 - Note: DA=51% of Basic pay, CCA=Rs.100 consolidated.

b. Define a structure to store employee’s data with the following specifications:
 - Employee-Number, Employee-Name, Basic pay, Date of Joining

 i) Write a function to store 10 employee details.
ii) Write a function to implement the following rules while revising the basic pay.
 If Basic pay <= Rs.5000 then increase it by 15%.
 If Basic pay > Rs.5000 and <= Rs.25000 then it increase by 10%.
 If Basic pay > Rs.25000 then there is no change in basic pay.

iii) Write a function to print the details of employees who have completed 20 years of service from the date of joining.

WEEK-17

a. Write a program which copies one text file to another.

b. Write a program to reverse the first N characters of a given text file.

 Note: The file name and N are specified through command line.

WEEK-18:

Consider the following text file:

Input File:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Customer_ID</th>
<th>Item No.</th>
<th>Qty.</th>
<th>Price Per Item (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C01</td>
<td>I1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>C02</td>
<td>I2</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>C03</td>
<td>I2</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>C04</td>
<td>I4</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Write a program to print the output in following format by giving the Customer_ID as an input.

Output:

```
S.V. PROVISION STORES
TIRUPATI

Customer_ID: C01        Date: 12-08-2010

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Total | 20  |
```

WEEK-19

Write a program to implement stack operations using:

i) Arrays ii) Pointers
WEEK-20
Write a program to implement linear queue operations using:
 i) Arrays ii) Pointers

WEEK-21
Write a program to implement circular queue operations using arrays

WEEK-22
Write a program to implement the following operations on Singly Linked List
 a. List Creation b. Insertion c. Deletion d. Display

WEEK-23
Write a program to implement the following operations on Doubly Linked List
 a. List Creation b. Insertion c. Deletion d. Display

WEEK-24
Write a program to implement the following operations on Circular Linked List
 a. List Creation b. Insertion c. Deletion d. Display

TEXTBOOKS:

REFERENCE BOOKS:
2. *C and Data Structures*, P. S. Deshpande and O. G. Kakde, WILEY-dreamtech India Private Limited, 2005
B.Tech. I Year

10BT1BS06: ENGINEERING PHYSICS & ENGINEERING CHEMISTRY LABORATORY
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

ENGINEERING PHYSICS LAB

Conduct a minimum of any Twelve experiments.

1. I-V characteristics of a P-N Junction diode
2. Characteristics of LED source.
3. Determination of wavelength of a laser source-diffraction grating
4. Determination of particle size by using a laser source
5. Photo diode – characteristics
6. Thermistor characteristics.
7. Hall effect
8. Magnetic field along the axis of a current carrying coil-Stewart and Gee’s method.
9. Energy gap of a material of a P-N junction
10. B – H curve
11. Determination of dielectric constant
12. Verification of laws of stretched string – sonometer
13. Melde’s experiment- transverse and longitudinal modes
15. Determination of numerical aperture of an optical fiber
16. Determination of bending losses of an optical fibre

ENGINEERING CHEMISTRY LAB

Conduct a minimum of any Ten experiments.

1. Preparation of standard EDTA and estimation of hardness of water
2. Preparation of standard EDTA and estimation of copper
3. Estimation of alkalinity of water
4. Preparation of standard potassium dichromate and estimation of ferrous iron
5. Preparation of standard potassium dichromate and estimation of copper by iodometry
6. Estimation of iron in cement by colorimetry
7. Conductometric titration of strong acid and strong base.
8. Preparation of phenol-formaldehyde resin.
9. Determination of viscosity of the oils through redwood-viscometer
10. Determination of pH of a given solution by pH metry.
11. Estimation of dissolved oxygen
12. Determination of calorific value of fuel using bomb calorimeter

TEXTBOOKS:
B.Tech. I Year
10BT1HS02: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIIE and IT)

The following course content is prescribed for the English language laboratory sessions.

1. Introduction to Phonetics.
2. Introduction to Consonants, Vowels and Diphthongs.
3. Introduction to Accent and Rhythm.
5. Conversation Starters.
7. Just a Minute (JAM), Elocution, Debate and Impromptu.
8. Story telling.
9. Describing people, places and objects.
10. Movie Review.
12. Presentation Skills.

Suggested Software:

- Cambridge Advanced Learners’ English Dictionary with CD
- The Rosetta stone English Library.
- Clarity Pronunciation Power – Part-I.
- Mastering English in Vocabulary, Grammar, Punctuation and Composition.
- Dorling Kindersley series of grammar, Punctuation, Composition etc.
- Language in use. Foundation Books Pvt Ltd with CD.
• Learning To speak English - 4 CDs.
• Microsoft Encarta CD.
• Murphy’s English Grammar, Cambridge with CD
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
• English Pronunciation Dictionary
• Speech Solutions
• Sky Pronunciation
• Tense Buster
B.Tech. I Year

10BT1EC04: ENGINEERING AND IT WORKSHOP
(Common to BOT, CE, ME, CSE, CSSE, ECE, EConE, EEE, EIE and IT)

L T P C
- - 3 4

ENGINEERING WORKSHOP

1. Trades for Exercise:
 a. **Carpentry Shop**: Two joints: Cross lap joint, mortise and tenon T-joint.
 b. **Fitting Shop**: Two joints: Square joint and V-joint.
 c. **Sheet Metal Shop**: Two jobs: Trapezoidal tray and square tin.
 d. **House Wiring**: Two jobs: Wiring for two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp.
 Earthing: Concept and establishment, safety precautions while house wiring.
 e. **Foundry**: Preparation of two moulds: For a single pattern and a double pattern.

2. Trades for Demonstration:
 i. Welding
 ii. Metal Cutting
 iii. Plumbing

 In addition to the above, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, plastics, steels, meters, gauges, equipment, first-aid and shop safety shall be demonstrated through charts, layouts, figures, circuits, CD or DVD.

REFERENCE BOOKS:

IT WORKSHOP

PC Hardware:

1. Identifying the peripherals of a Computer, components in a CPU and its functions, block diagram of CPU along with the configuration of each peripheral.

2. Disassembling and assembling the PC back to working condition, videos for assembling and disassembling a PC.

3. Introduction to Operating System (OS) as system software, features of OS, need of OS, components of OS, installation of Microsoft Windows XP Operating System on the personal computer, examples of operating systems.

4. Introduction to UNIX OS and basic commands in UNIX such as cat, ls, pwd, rm, rmdir, ln, head, tail, cd, cp, mv, who, date, cal, clear, man, tty, wc, diff, cmp, grep etc. and vi editors and sample C programs.

5. Hardware and Software Troubleshooting: PC symptoms when computer malfunctions, types of faults, common errors and how to fix them, basic hardware and software troubleshooting steps, PC diagnostic tools.

MS Office 2007: MS Word

6. Introduction to MS Word, importance of Word as Word Processor, overview of toolbars, saving, accessing files, using help and resources.

Create a word document using the features: Formatting fonts, drop cap, applying text effects, using character spacing, borders and shading, inserting headers and footers, using date and time option.

7. Create a project using MS Word using the features: Inserting tables, bullets and numbering, changing text direction, hyperlink, images from files and clipart, drawing toolbar and word art, mail merge.

MS Excel

8. Introduction to MS Excel as a Spreadsheet tool, overview of toolbars, accessing, saving excel files, using help and resources.

Create a spreadsheet using the features: Gridlines, format cells, summation, auto fill, formatting text, formulae in excel charts.

9. Create a spreadsheet using the features: Split cells, Sorting, Conditional formatting, freeze panes, pivot tables, data validation.
MS PowerPoint

10. Introduction to MS PowerPoint, utilities, overview of toolbars, PPT orientation, slide layouts, types of views.
 Create a PowerPoint presentation using the features: Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows.

11. Create a PowerPoint presentation using the features: Auto content wizard, hyperlinks, Inserting images, clip art, audio, video, custom animation, slide hiding, tables and charts.

MS Publisher

12. Introduction to MS Publisher, overview of toolbars, saving files, templates, layouts.
 Create a website using the features: Home page, about us, Department, Contact page etc.

LaTeX

13. Introduction to LaTeX tool: Importance of LaTeX as document preparation system for high quality typesetting, accessing, overview of toolbars, saving files, overview of features like typesetting of article, journal, books, control over large documents, using help and resources.

Internet and World Wide Web

14. Web Browsers, Search Engines: Introduction to types of networks, customizing web browsers with LAN proxy settings, bookmarks, search toolbars and popup blockers, types of search engines and how to use search engines.

15. Cyber Hygiene: Introduction to various threats on Internet, types of attacks and how to overcome, installation of antivirus software, configuration of personal firewall and Windows update on Computers.

REFERENCE BOOKS:

3. Comdex Information Technology Course Kit, Vikas Gupta, WILEY Dreamtech, 2nd Edition
4. PC Hardware and A + Handbook, Kate J. Chase, Prentice Hall India, 2004